Landscape-scale = all Taylor Valley samples
Regional-scale = within basin and/or reach
n = 2 basins (LHSS and WHC)
n=4 reaches (upslope and downslope within each basin)
Local-scale = within each pit
n = 4 pits per reach (max)
n = 16 total survey pits
Depth profile = discrete 5 cm soil samples from soil surface to permafrost interface (up to 30 cm)
n = 7 depth samples per pit (max)
metadata factor descriptions
Depth
Depth2
Surface: 0 cm [0,5)
Intermediate: 5 - 25 cm (depending on pit)
Permafrost interface: 20 - 30 cm (depending on pit)
Depth3_combo0and5
Surface: 0 cm & 5 cm [0,10)
Intermediate: 10 - 25 cm (depending on pit)
Permafrost interface: 20 - 30 cm (depending on pit)
Regional species pool = γ-diversity of OTUs present within each basin and/or reach
note: with 4 spatial scales to contend with (whole valley, basin, reach, and pit) the ‘landscape-regional-local scale’ & α, β γ-diversity terminology gets a little messy…
options to deal with this include dropping the whole valley scale, then landscape = basin, regional = reach, and local = pit
but I think it might be more interesting to keep landscape = whole valley and have regional = reach, this would let us do some analyses related to edaphic variable impacts on assembly / structure
Big Picture:
Investigating landscape, regional, and local-scale diversity and dynamics of local-scale assembly & structuring along active layer depth profiles
Goals:
Describe patterns in β-diversity along depth profiles (including taxonomy)
1.1. by basin
1.2. by reach
1.3. individually
Explore γ-diversity
2.1. at landscape-scale (whole valley)
2.2. within each basin
2.3. within each reach
Investigate assembly mechanisms / species sorting / environmental filtering along depth profiles by incorporating edaphic variables
n | missing | distinct | value |
---|---|---|---|
74 | 0 | 1 | ActiveLayer_S |
Value ActiveLayer_S Frequency 74 Proportion 1
n | missing | distinct |
---|---|---|
74 | 0 | 2 |
Value LHSS WHC Frequency 40 34 Proportion 0.541 0.459
n | missing | distinct |
---|---|---|
74 | 0 | 2 |
Value Lake Hoare South Shore Worm Herder Creek Frequency 40 34 Proportion 0.541 0.459
n | missing | distinct |
---|---|---|
74 | 0 | 74 |
lowest : | LHSS_DownSlope_Pit1_00cm | LHSS_DownSlope_Pit1_05cm | LHSS_DownSlope_Pit1_10cm | LHSS_DownSlope_Pit1_15cm | LHSS_DownSlope_Pit1_30cm |
highest: | WHC_UpSlope_Pit4_05cm | WHC_UpSlope_Pit4_10cm | WHC_UpSlope_Pit4_15cm | WHC_UpSlope_Pit4_20cm | WHC_UpSlope_Pit4_25cm |
n | missing | distinct |
---|---|---|
74 | 0 | 2 |
Value Lake Bonney Lake Hoare Frequency 34 40 Proportion 0.459 0.541
n | missing | distinct |
---|---|---|
74 | 0 | 2 |
Value DownSlope UpSlope Frequency 35 39 Proportion 0.473 0.527
n | missing | distinct |
---|---|---|
74 | 0 | 4 |
Value LHSS_DownSlope LHSS_UpSlope WHC_DownSlope WHC_UpSlope Frequency 19 21 16 18 Proportion 0.257 0.284 0.216 0.243
n | missing | distinct | Info | Mean | Gmd |
---|---|---|---|---|---|
74 | 0 | 4 | 0.937 | 2.459 | 1.265 |
Value 1 2 3 4 Frequency 19 20 17 18 Proportion 0.257 0.270 0.230 0.243For the frequency table, variable is rounded to the nearest 0
n | missing | distinct |
---|---|---|
74 | 0 | 7 |
Value 00 cm 05 cm 10 cm 15 cm 20 cm 25 cm 30 cm Frequency 9 14 14 12 12 8 5 Proportion 0.122 0.189 0.189 0.162 0.162 0.108 0.068
n | missing | distinct |
---|---|---|
74 | 0 | 3 |
Value Surface Intermediate Permafrost Interface Frequency 9 53 12 Proportion 0.122 0.716 0.162
n | missing | distinct |
---|---|---|
74 | 0 | 3 |
Value Surface Intermediate Permafrost Interface Frequency 23 39 12 Proportion 0.311 0.527 0.162
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 74 | 1 | 6057 | 6018 | 1257 | 1432 | 2124 | 3808 | 7312 | 13841 | 21239 |
n | missing | distinct | Info | Mean | Gmd |
---|---|---|---|---|---|
74 | 0 | 7 | 0.975 | 13.24 | 10.16 |
Value 0 5 10 15 20 25 30 Frequency 9 14 14 12 12 8 5 Proportion 0.122 0.189 0.189 0.162 0.162 0.108 0.068For the frequency table, variable is rounded to the nearest 0
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 63 | 1 | 216.5 | 60.43 | 97.45 | 131.50 | 194.75 | 222.00 | 252.75 | 276.90 | 288.70 |
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 74 | 1 | 334.3 | 113.2 | 136.6 | 207.2 | 291.3 | 329.3 | 410.4 | 458.3 | 476.3 |
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 74 | 1 | 31.8 | 13.29 | 14.72 | 18.73 | 23.73 | 30.01 | 37.15 | 47.00 | 50.72 |
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 74 | 1 | 344.5 | 111 | 146.1 | 226.6 | 305.6 | 343.3 | 423.4 | 458.4 | 488.5 |
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 74 | 1 | 10.42 | 2.26 | 6.205 | 7.930 | 9.578 | 10.620 | 11.930 | 12.691 | 12.901 |
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 74 | 1 | 4.312 | 0.6901 | 2.406 | 3.678 | 4.252 | 4.439 | 4.706 | 4.961 | 5.071 |
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 74 | 1 | 0.9475 | 0.05862 | 0.7259 | 0.9363 | 0.9587 | 0.9728 | 0.9822 | 0.9877 | 0.9887 |
Value 0.590 0.645 0.680 0.695 0.740 0.755 0.845 0.935 0.945 0.950 0.955 0.960 Frequency 1 1 1 1 1 1 1 2 2 5 4 5 Proportion 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.027 0.027 0.068 0.054 0.068 Value 0.965 0.970 0.975 0.980 0.985 0.990 Frequency 6 13 7 10 10 3 Proportion 0.081 0.176 0.095 0.135 0.135 0.041For the frequency table, variable is rounded to the nearest 0.005
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 74 | 1 | 42.05 | 28.85 | 3.67 | 15.71 | 24.20 | 36.80 | 56.08 | 81.22 | 88.88 |
n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
74 | 0 | 63 | 1 | 83.85 | 33.24 | 25.88 | 39.13 | 68.86 | 84.02 | 102.96 | 119.31 | 127.78 |
Control
Did the surface samples (0 and 5 cm) have higher richness than the intermediate
and Permafrost Interface samples?
wilcox.test(Observed ~ Depth3_combo0and5, data = Survey_alpha_meta,
paired = F,p.adjust.method = "BH",alternative="less",
subset = Depth3_combo0and5 %in% c("Permafrost Interface","Surface"))
##
## Wilcoxon rank sum test with continuity correction
##
## data: Observed by Depth3_combo0and5
## W = 205, p-value = 0.9905
## alternative hypothesis: true location shift is less than 0